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A clamped–free flexible arm rotating in a horizontal plane and carrying a moving mass is
studied in this paper. The arm is modelled by the Euler–Bernoulli beam theory in which
rotatory inertia and shear deformation effects are ignored. The assumed mode method in
conjunction with Hamilton’s principle is used to derive the equation of motion of the
system which takes into account the effect of centrifugal stiffening due to the rotation of
the beam. The eigenfunctions of a cantilever beam which satisfy the prescribed geometric
boundary conditions are used as basis functions in the assumed mode method. The
equation of motion is expressed in non-dimensional matrix form. Pre-designed transformed
cosine profiles are used as trajectory inputs for the hub angle and the moving mass. The
equation of motion is solved numerically using the fourth order Runge–Kutta method.
Graphical results are presented to show the influence of centrifugal stiffening effect, moving
mass values, mass travelling time, hub angle and mass trajectory profile on the deflection of
the beam.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The vibration behaviour of a flexible beam subjected to moving mass has long been an
important subject for investigation as it finds many practical applications such as bridges
on which vehicles or trains travel, and a robotic arm carrying a moving end effector.

The above problem is usually modelled by a non-rotating simply supported or clamped-
free cantilever beam acted upon by a moving force [1, 2] or a moving mass [3–12]. Most
researchers investigated the effects of different mass position, mass travelling velocity and
mass inertia on the vibration behaviour of the beam [3–7]. Some others compared the
difference between the moving force model and the moving mass model [8]. Lee [8] studied
the dynamic response of a clamped–clamped beam acted upon by a moving mass. He
analyzed the problem of the moving mass separating from the beam by monitoring the
contact forces between them. He also showed that the ‘‘moving-force’’ formulation is not
always an upper bound solution for the corresponding ‘‘moving-force moving-mass’’
formulation. Stanisic [10] developed a method to obtain mode shapes which account for
the motion of the mass by dividing the beam into two separate regions with respect to the
moving mass. Recently, Park et al. [12] investigated the vibration behaviour of an elastic
beam fixed on a moving cart and carrying a moving mass.

In all the above studies the beam under investigation is considered to be non-rotating.
Fung et al. [13] investigated the vibration frequencies of a rotating flexible arm carrying a
moving mass which takes into account the effect of centrifugal stiffening [14] due to the
rotation of the arm. The present study extends the work of reference [13] to investigate the
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dynamic response of the same system. The effect of centrifugal stiffening due to the
rotation of the arm is also taken into account in the investigation. The arm is rotating in a
horizontal plane in which the gravitational effect is neglected. The assumed mode method
in conjunction with Hamiltion’s principle is used to derive the equation of motion of the
system. The trajectories of the hub angle and the moving mass are simulated using pre-
designed transformed cosine profiles. The equation of motion is solved numerically and
the results show the influence of centrifugal stiffening effect, moving mass values, mass
travelling time, hub angle and mass trajectory profile on the deflection of the beam.

2. THEORY AND FORMULATION

Figure 1 shows a flexible arm modelled by the Euler–Bernoulli beam theory rotates at an
angular velocity of ’yy in a horizontal plane about the clamped axis and has a mass m

travelling along it. The arm is of length L; mass per unit length r and flexural rigidity EI.
Let OXY and Oij represent the inertial and rotating Cartesian axes respectively. The mass
moment of inertia of the hub is J: The transverse displacement of a spatial point on the
beam at a distance r (05r5L) from the origin is denoted by wðr; tÞ while the velocity of
the moving mass relative to the beam is denoted by ’ssðtÞ: The position vector r at a spatial
position r and the resultant velocity Vm of the mass are given by

r ¼ ri� wðr; tÞj; ’rr ¼ wðr; tÞ’yyiþ r’yyj� ’wwðr; tÞj; ð1Þ

Vm ¼ ½’rrþ ’ss�r¼s ¼ ½ð’ss þ w’yyÞiþ ðr’yy� ’ww � ’ssw0Þj�r¼s; ð2Þ

where a dot and a prime denote the derivatives with respect to time t and the spatial
variable r respectively. The kinetic energy of the beam Tb; the kinetic energy of the moving
mass Tm; the total potential energy of the system V and the virtual work done dW by the
local driving force for the moving mass Fm and the applied hub torque t are given by

Tb ¼ 1

2

Z L

0

r’rrT’rr dr þ 1

2
J ’yy

2

¼ 1

2

Z L

0

rðw2 ’yy
2 þ r2 ’yy

2 þ ’ww2 � 2r’yy ’wwÞ dr þ 1

2
J ’yy

2
; ð3Þ
Figure 1. A rotating flexible arm carrying a moving mass.
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Tm ¼ 1

2
mVT

mVm

¼ 1

2
m½’ss2ð1þ w02Þ þ 2’ssð ’www0 � r’yyw0 þ ’yywÞ þ ’yy

2
w2 þ ðr’yy� ’wwÞ2�r¼s; ð4Þ

V ¼ EI

2

Z L

0

w002 dr þ 1

2

Z L

0

Pðr; tÞw02 dr; dW ¼ Fm ds þ tdy; ð5; 6Þ

where Pðr; tÞ is the centrifugal force due to the centrifugal stiffening effect [14] given by

Pðr; tÞ ¼
ms’yy

2 þ
R L

r
rr’yy

2
dr; 04r4s;R L

r
rr’yy

2
dr; s5r4L:

8<
: ð7Þ

By applying Hamilton’s principle,Z t2

t1

ðdTb þ dTm � dV þ dWÞ dt ¼ 0 ð8Þ

and considering only those terms related to dw; the governing equation of motion of the
flexible beam can be obtained. The non-dimensional parameters are defined as follows:

x ¼ r

L
; s0 ¼

s

L
; N ¼ m

rL
;

v ¼ w

L
; T ¼ t

L2

ffiffiffiffiffiffi
EI

r

s
; Z ¼

ffiffiffiffiffiffi
r

EI

r
’yyL2: ð9Þ

By using the assumed mode method, the non-dimensional transverse deflection vðx;TÞ
of the beam is expressed as

vðx;TÞ ¼
Xn

i¼1

YiðxÞqiðTÞ; ð10Þ

where YiðxÞ are the mode shape functions or eigenfunctions and qiðTÞ are the generalized
co-ordinates which are unknown functions of time.

Substituting equations (9) and (10) into equations (3)–(8), and considering only those
terms related to dqi the non-dimensional equation of motion of the flexible beam is
obtained and is expressed in matrix form as:

ðMþ NHÞ.qqþN ’ss0ðB� CÞ’qqþ ½K� Z2Mþ Nð.ss0B� ’ss20A� Z2HÞ�q
¼ ’ZZU � Ns0 ’ss0ZY0 þ Nð’ss0Zþ s0 ’ZZÞY; ð11Þ

where a dot and a prime denote the derivatives with respect to the non-dimensional time T

and spatial variable x respectively, and

A ¼ ½Y 0
i ðs0ÞY 0

j ðs0Þ�; B ¼ ½Yiðs0ÞY 0
j ðs0Þ�; C ¼ ½Y 0

i ðs0ÞYjðs0Þ� i; j ¼ 1; 2; . . . ; n; ð12214Þ

H ¼ ½Yiðs0ÞYjðs0Þ�; M ¼
Z 1

0

YiðxÞYjðxÞ dx

 �

; i; j ¼ 1; 2; . . . ; n; ð15; 16Þ

K ¼
Z 1

0

fY 00
i ðxÞY 00

j ðxÞ þ P0ðxÞY 0
i ðxÞY 0

j ðxÞg dx

 �

; i; j;¼ 1; 2; . . . ; n; ð17Þ

U ¼
Z 1

0

xYiðxÞ dx
� 
T

; Y ¼ fYiðs0ÞgT; q ¼ fqiðTÞgT; i ¼ 1; 2; . . . ; n; ð18220Þ
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P0ðxÞ ¼
Ns0Z2 þ

1

2
Z2ð1� x2Þ; 04x4s0;

1

2
Z2ð1� x2Þ; s05x41:

8><
>: ð21Þ

The initial conditions of equation (11) are assumed to be qð0Þ ¼ ’qqð0Þ ¼ 0:

3. NUMERICAL SIMULATION

In this paper, the eigenfunctions of a non-rotating cantilever beam [9] is chosen as the
mode shape in equation (10) and is given by

YiðxÞ ¼ coshðkixÞ � cosðkixÞ �
cosðkiÞ þ coshðkiÞ
sinðkiÞ þ sinhðkiÞ

ðsinhðkixÞ � sinðkixÞÞ i ¼ 1; 2; 3; . . . :

ð22Þ
These eigenfunctions do not represent the exact mode shape of the complete system

since they do not account for the effects of the moving mass Fm and the centrifugal
stiffening due to the rotation of the beam. However, they are selected in this paper because
of their orthogonal property and also they satisfy the geometric boundary conditions of
the system [9]. In this paper, only the first three modes are considered. The frequency
parameters ki in equation (22) have the values

k1¼ 1�8751; k2¼ 4�6941 and k3¼ 7�8548:
In order to perform numerical simulation for the rotating flexible beam under the

moving mass, the local driving force for the moving mass Fm and the applied hub torque t
are pre-designed [12] to generate transformed cosine trajectory profiles for the moving
mass and the hub angle (Figure 2). This profile provides zero velocity and acceleration at
both the initial and final positions of the moving mass. The profile thus chosen for the hub
angle and the moving mass are given by

Z ¼ f ðTÞ ’ggðTÞ � ’ff ðTÞgðTÞ
f 2ðTÞ þ g2ðTÞ ; ’ss0 ¼

f ðTÞ ’ff ðTÞ þ gðTÞ ’ggðTÞ
½ f 2ðTÞ þ g2ðTÞ�0�5

; ð23; 24Þ

where

f ðTÞ ¼
x1 þ

x2 � x1

Tt

T � Tt

2p
sin

2pT

Tt

� �
 �
; 04T5Tt;

x2; T5Tt;

8><
>: ð25Þ

gðTÞ ¼
y1 þ

y2 � y1

Tt

T � Tt

2p
sin

2pT

Tt

� �
 �
; 04T5Tt;

y2; T5Tt

8><
>: ð26Þ

and ðx1; y1Þ and ðx2; y2Þ are the initial and final positions of the moving mass with
reference to the axes OXY respectively, and Tt is the travelling time of the mass. If the
beam flexibility is negligible, the trajectory described by the moving mass is a straight line
in the inertial frame, and the resulting velocity and acceleration profiles can also be
described by the transformed cosines.

In the present simulation, two cases with different initial and final positions of the
moving mass are used. In case 1 the mass is moved towards the free end from (0�025, 0�2)
to (0�8, 0�1), whereas in case 2 the mass is moved towards the clamped end from (0�8, 0�1)
to (0�025, 0�2). In both cases, the total non-dimensional simulation time is 25. The mass



Figure 2. Moving mass and hub angle trajectory profiles. (a) case 1, Tt ¼ 5; (b) case 2, Tt ¼ 8:
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travelling time Tt in each case is varied from 5 to 8 while the mass value N is varied from
0�5 to 2.

After the travelling time Tt has passed (T5Tt), there is no mass and beam motion, i.e.,
’ss0; .ss0; Z and ’ZZ are all zero. The system is in the steady state and the equation of motion
(11) is reduced to homogeneous second order ordinary differential equations as follows:

ðMþ NHÞ.qqþ Kq ¼ 0: ð27Þ

4. RESULTS

Upon substituting the hub angle and the moving mass trajectory profiles [equations
(23)–(26)] into the equation of motion of the system (11), the fourth order Runge–Kutta
method in conjunction with MATLAB is used to obtain the numerical results of the beam
deflection under different values of moving mass N and mass travelling time Tt:

Figures 3–8 show the non-dimensional deflection of the beam at the position of the
moving mass vðs0;TÞ plotted against the non-dimensional time T under different values of



Figure 3. Non-dimensional deflection of beam under the moving mass vðs0;TÞ for N ¼ 0�5 and Tt ¼ 5 in
case 1 (mass is moved towards the free end): }}, with centrifugal stiffening effect; - - -, without centrifugal
stiffening effect.

Figure 4. Non-dimensional deflection of beam under the moving mass vðs0;TÞ for N ¼ 2�0 and Tt ¼ 5 in
case 1 (mass is moved towards the free end): }}, with centrifugal stiffening effect; - - -, without centrifugal
stiffening effect.
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Figure 5. Non-dimensional deflection of beam under the moving mass vðs0;TÞ for N ¼ 0�5 and Tt ¼ 8 in
case 1 (mass is moved towards the free end): }}, with centrifugal stiffening effect; - - -, without centrifugal
stiffening effect.

Figure 6. Non-dimensional deflection of beam under the moving mass vðs0;TÞ for N ¼ 0�5 and Tt ¼ 5 in
case 2 (mass is moved towards the clamped end): }}, with centrifugal stiffening effect; - - -, without centrifugal
stiffening effect.
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Figure 7. Non-dimensional deflection of beam under the moving mass vðs0;TÞ for N ¼ 2�0 and Tt ¼ 5 in
case 2 (mass is moved towards the clamped end): }}, with centrifugal stiffening effect; - - -, without centrifugal
stiffening effect.

Figure 8. Non-dimensional deflection of beam under the moving mass vðs0;TÞ for N ¼ 0�5 and Tt ¼ 8 in
case 2 (mass is moved towards the clamped end): }}, with centrifugal stiffening effect; - - -, without centrifugal
stiffening effect.
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moving mass N and mass travelling time Tt for cases 1 and 2. Comparison of the first and
second peak deflections in the transient state (04T5Tt) show that in case 1 (the mass is
moved towards the free end) the first peak deflection is smaller than the second peak
deflection, whereas in case 2 (the mass is moved towards the clamped end) the first peak
deflection is larger than the second peak deflection. In both cases, the first and second
peak deflections increase with increase in mass and decrease with increase in mass
travelling time.

The difference between the transient deflection (first and second peak deflections) and
the steady state (T5Tt) vibration amplitude in case 1 is related to the mass travelling time
Tt: For Tt ¼ 5 in case 1, the transient deflection is smaller than the steady state vibration
amplitude (Figures 3 and 4). However for Tt ¼ 8; the transient deflection is larger than the
steady state vibration amplitude (Figure 5). In case 2 the transient deflection is always
larger than the steady state vibration amplitude (Figures 6–8).

The effects of mass N and mass travelling time Tt on the steady state vibration
amplitude of the beam under the moving mass for cases 1 and 2 are best illustrated in
Figure 9. Comparison of the steady state vibration amplitude in both cases show that the
steady state vibration amplitude of case 1 is greater than that of case 2 for the same mass
and travelling time. This can be expected that when the mass is more close to the clamped
end, the vibration amplitude will be reduced. In case 1 for Tt ¼ 5 and 6 the steady state
vibration amplitude increases with increase in mass N: In case 2 for Tt ¼ 5 the steady state
vibration amplitude decreases as N increases, whereas for Tt ¼ 6 an increase in moving
mass N causes an increase in the steady state vibration amplitude. In both cases for Tt ¼ 7
Figure 9. Steady state vibration amplitude of beam as function of moving mass N and mass travelling time Tt:
Values of mass travelling time Tt: �}�, Tt ¼ 5; �&�, Tt ¼ 6; �n�, Tt ¼ 7; �
�, Tt ¼ 8: Values of moving
mass N: �*�, N ¼ 0�5; �*�, N ¼ 1�0; �/�, N ¼ 1�5; �+�, N ¼ 2�0: (a) case 1; (b) case 2.
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and 8 the steady state vibration amplitude decreases first and then increases with increase
in mass N: However, a decrease in the mass travelling time Tt causes an increase in the the
steady state vibration amplitude under all conditions in both cases.

The deflection of the beam under the moving mass without considering the centrifugal
stiffening effect [by setting Pðr; tÞ ¼ 0 in equation (5)] is shown with dotted line in
Figures 3–8. It can be seen that the existence of the centrifugal stiffening effect can
reduce the steady state vibration amplitude. If the centrifugal stiffening effect is ignored in
the simulation, the computed steady state vibration amplitude will be increased. The
increase percentage is found to range from about 6% in Figures 3 and 6 to about 16% in
Figures 5 and 8.

In this paper, the eigenfunctions of a non-rotating cantilever beam are used as the basis
functions and a three-mode approximation is used in the deflection equation (10).
Simulation results using MATLAB show that vðs0;TÞ is dominated by the first mode, and
the contributions of the second and third modes are very small. This suggests that the
difference between the three-mode approximation and the approximation using more
modes is insignificant.

5. CONCLUSIONS

In this paper, the dynamic response of a flexible arm rotating in a horizontal plane and
carrying a moving mass is studied. The arm is modelled by the Euler–Bernoulli beam
theory. The equation of motion is derived using the assumed mode method in conjunction
with Hamilton’s principle. The effect of centrifugal stiffening due to the rotation of the
beam is taken into account in the analysis. The trajectory inputs of the hub angle and the
moving mass are simulated using prescribed cosine profiles. The equation of motion is
solved numerically using the fourth order Runge–Kutta method. The results are presented
graphically to show the influence of the centrifugal stiffening effect, different moving mass,
mass travelling time and trajectory profiles on the deflection of the beam.
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